题目内容
【题目】在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有几个?
(1)AE平分∠DAB;(2)△EBA≌△DCE; (3)AB+CD=AD;(4)AE⊥DE;(5)AB//CD;
大家一起热烈地讨论交流,小红第一个得出正确答案,是( ).
A. 2个 B. 3个 C. 4个 D. 5个
【答案】C
【解析】
取AD的中点F,连接EF.根据平行线的性质可证得(1)(4)正确,根据梯形中位线定理可证得(3)正确.根据全等三角形全等的判定可证得(2)的正误,即可得解.
AD的中点F,连接EF,
取AD的中点F,连接EF.
∵∠B=∠C=90°,
∴AB∥CD,结论(5)正确,
∵E是BC的中点,F是AD的中点,
∴EF∥AB∥CD,2EF=AB+CD(梯形中位线定理)①;
∴∠CDE=∠DEF(两直线平等,内错角相等),
∵DE平分∠ADC,
∴∠CDE=∠FDE=∠DEF,
∴DF=EF;
∵F是AD的中点,
∴DF=AF,
∴AF=DF=EF②,
由①得AF+DF=AB+CD,即AD=AB+CD;结论(3)正确,
由②得∠FAE=∠FEA,
由AB∥EF可得∠EAB=∠FEA,
∴∠FAE=∠EAB,即EA平分∠DAB;结论(1)正确
∵∠FAE=∠EAB, DE平分∠ADC,且DC∥AB,
∴∠EDA+∠DAE=90°,
∴∠DEA=90°,即AE⊥DE;结论(4)正确,
由以上结论及三角形全等的判定方法,无法证明△EBA≌△DCE.
正确的结论有4个,
故选C.
练习册系列答案
相关题目