题目内容
【题目】某民俗旅游村为接待游客住宿需要,开设了有张床位的旅馆,当每张床位每天收费元时,床位可全部租出.若每张床位每天收费提高元,则相应的减少了张床位租出.如果每张床位每天以元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是( )
A. 14元 B. 15元 C. 16元 D. 18元
【答案】C
【解析】
设每张床位提高x个单位,每天收入为y元,根据等量关系“每天收入=每张床的费用×每天出租的床位”可求出y与x之间的函数关系式,运用公式求最值即可.
设每张床位提高x个2元,每天收入为y元.根据题意得:
y=(10+2x)(100﹣10x)=﹣20x2+100x+1000.
当x=﹣=2.5时,可使y有最大值.
又x为整数,则x=2时,y=1120;x=3时,y=1120;
则为使租出的床位少且租金高,每张床收费=10+3×2=16(元).
故选C.
练习册系列答案
相关题目
【题目】二次函数,,是常数,且中的与的部分对应值如下表所示,则下列结论中,正确的个数有( )
;当时,;当时,的值随值的增大而减小;
方程有两个不相等的实数根.
A. 4个 B. 3个 C. 2个 D. 1个