题目内容
【题目】如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=,∠BAD=60°,且AB>.
(1)求∠EPF的大小;
(2)若AP=10,求AE+AF的值;
(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.
【答案】(1)120°;(2);(3)AP的最大值为12,AP的最小值为6.
【解析】(1)过点P作PG⊥EF于点G,如图1所示.
∵PE=PF=6,EF,∴FG=EG=,∠FPG=∠EPG=∠EPF.
在Rt△FPG中,sin∠FPG===,∴∠FPG=60°,∴∠EPF=120°;
(2)过点P作PM⊥AB于点M,作PN⊥AD于点N,如图2所示.
∵AC为菱形ABCD的对角线,∴∠DAC=∠BAC,AM=AN,PM=PN.
在Rt△PME和Rt△PNF中,PM=PN,PE=PF,∴Rt△PME≌Rt△PNF,∴ME=NF.
又AP=10,∠PAM=∠DAB=30°,∴AM=AN=APcos30°=10×=,∴AE+AF=(AM+ME)+(AN﹣NF)=AM+AN=;
(3)如图,当△EFP的三个顶点分别在AB,AD,AC上运动,点P在P1,P之间运动,∴P1O=PO=3,AO=9,∴AP的最大值为12,AP的最小值为6.
练习册系列答案
相关题目