题目内容
【题目】如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.
(1)求证:FD是⊙O的一条切线;
(2)若AB=10,AC=8,求DF的长.
【答案】(1)证明见解析;(2).
【解析】试题分析:(1)利用圆周角定理以及平行线的判定得出∠FDO=90°,进而得出答案;
(2)利用垂径定理得出AE的长,再利用相似三角形的判定与性质得出FD的长.
(1)证明:∵∠CDB=∠CAB,∠CDB=∠BFD,
∴∠CAB=∠BFD,
∴FD∥AC(同位角相等,两直线平行),
∵∠AEO=90°,
∴∠FDO=90°,
∴FD是⊙O的一条切线;
(2)解:∵AB=10,AC=8,DO⊥AC,
∴AE=EC=4,AO=5,
∴EO=3,
∵AE∥FD,
∴△AEO∽△FDO,
∴=,
∴=,
解得:FD=.
练习册系列答案
相关题目