题目内容

(本题满分9分)
如图11,已知抛物线与x 轴交于两点A、B,其顶点为C.

(1)对于任意实数m,点M(m,-2)是否在该抛物线上?请说明理由;
(2)求证:△ABC是等腰直角三角形;
(3)已知点D在x轴上,那么在抛物线上是否存在点P,使得以B、C、D、P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
解:(1)假如点M(m,-2)在该抛物线上,则-2=m2-4m+3,
m2-4m+5=0,由于△=(-4)2-4×1×5=-4<0,此方程无实数解,
所以点M(m,-2)不会在该抛物线上;
(2)当y=0时,x2-4x+3=0,x1=1,x2=3,由于点A在点B左侧,∴A(1,0),B(3,0)
y= x2-4x+3=(x-2)2-1,∴顶点C的坐标是(2,-1),
由勾股定理得,AC=,BC=,AB=2,
∵AC2+BC2=AB2, ∴△ABC是等腰直角三角形;
(3)存在这样的点P.
根据对角线互相平分的四边形是平行四边形,因此连接点P与点C的线段应被x轴平分,
∴点P的纵坐标是1,
∵点P在抛物线y= x2-4x+3上,∴当y=1时,即x2-4x+3=1,解得x1=2-,x2=2+,
∴点P的坐标是(2-,1)或(2+,1).解析:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网