题目内容
【题目】如图1,在四边形ABCD的边BC的延长线上取一点E,在直线BC的同侧作一个以CE为底的等腰△CEF,且满足∠B+∠F=180°,则称三角形CEF为四边形ABCD的“伴随三角形”.
(1)如图1,若△CEF是正方形ABCD的“伴随三角形”:
①连接AC,则∠ACF= ;
②若CE=2BC,连接AE交CF于H,求证:H是CF的中点;
(2)如图2,若△CEF是菱形ABCD的“伴随三角形”,∠B=60°,M是线段AE的中点,连接DM、FM,猜想并证明DM与FM的位置与数量关系.
【答案】(1)①90°;②见解析;(2)DM=FM,理由见解析
【解析】
(1)①连接AC,利用正方形的性质得到∠ACB=45°,再利用等腰直角三角形的性质得到∠FCE=45°,然后利用∠ACF+∠ACB+∠FCE=180°进行求解即可;
②设BC=a,则CE=2a,利用等腰直角三角形的判定及性质得到AC=EF,然后利用全等三角形的判定及性质以及中点的定义进行求证即可;
(2)延长DM交BE于G,连接FM,FG,根据△CEF是菱形ABCD的“伴随三角形”,∠B=60°,得到△CEF是等腰三角形,且∠CFE=120°,然后利用全等三角形的判定及性质进行求解即可.
解:(1)①连接AC,
∵四边形ABCD是正方形
∴∠ACB=45°,∠B=90°,
∵△CEF是正方形ABCD的“伴随三角形”,
∴∠B+∠F=180°,
∴∠F=90°,
又∵△CFE是等腰三角形,
∴∠FCE=45°,
∴∠ACF=180°﹣∠FCE﹣∠ACB=90°,
故答案为:90°;
②连接AE,交CF于点H,
∵CE=2BC,
∴设BC=a,CE=2a,
∵∠B=90°,AB=BC=a,
∴AC=a,
∵∠F=90°,CE=2a,
∴EF=FC=a,
∵∠ACF=∠F=90°,
∴AC∥EF,
∴△ACH∽△EFH,
∴,
∴CH=HF,
∴点H是CF的中点,
(2)DM=FM,FM⊥DM
理由如下:如图,延长DM交CE于点P,连接DF,FP,
∵四边形ABCD是菱形
∴AB=BC=CD=AD,AB∥CD,AD∥BC,
∴∠B=∠DCP=60°,∠DAM=∠PEM,
∵若△CEF是菱形ABCD的“伴随三角形”,∠B=60°,
∴∠CFE+∠B=180°,
∴∠CFE=120°,且△CEF是等腰三角形,
∴∠ECF=30°=∠FEC,CF=EF,
∴∠DCF=30°
∵∠DAM=∠PEM,AM=ME,∠AMD=∠PME,
∴△ADM≌△EPM(ASA),
∴AD=PE,DM=MP,
∴CD=PE,且CF=EF,∠DCF=∠FEC=30°,
∴△CDF≌△EPF(SAS),
∴DF=PF,∠DFC=∠PFE,
∵∠PFE+∠CFP=∠CFE=120°,
∴∠DFC+∠CFP=120°=∠DFP,且DF=FP,DM=PM,
∴FM⊥DM,∠FDM=30°,
∴DM=FM.