题目内容
如图,把△ABC绕B点逆时针方旋转26°得到△A′BC′,若A′C′正好经过A点,则∠BAC=
- A.52°
- B.64°
- C.77°
- D.82°
C
分析:根据旋转的性质,易得∠ABA′=∠CBC′=∠CAC′=26°且AB=A′B,进而可得∠A′AB=77°,代入数据计算可得∠BAC的大小.
解答:根据题意:∵△ABC绕B点逆时针方旋转26°得到△A′BC′,且A′C′正好经过A点,
∴∠ABA′=∠CBC′=∠CAC′=26°,AB=A′B,
∴∠A′AB=77°,∠BAC=180-26-77=77°.
故选C.
点评:本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.
分析:根据旋转的性质,易得∠ABA′=∠CBC′=∠CAC′=26°且AB=A′B,进而可得∠A′AB=77°,代入数据计算可得∠BAC的大小.
解答:根据题意:∵△ABC绕B点逆时针方旋转26°得到△A′BC′,且A′C′正好经过A点,
∴∠ABA′=∠CBC′=∠CAC′=26°,AB=A′B,
∴∠A′AB=77°,∠BAC=180-26-77=77°.
故选C.
点评:本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.
练习册系列答案
相关题目