题目内容

小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点 B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是

A.+1          B.+1           C.2.5               D.

 

【答案】

B

【解析】

试题分析:根据翻折变换的性质得出AB=BE,∠AEB=∠EAB=45°,∠FAB=67.5°,进而得出tan∠FAB=tan67.5°=得出答案即可.

∵将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,

∴AB=BE,∠AEB=∠EAB=45°,

∵还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,

∴AE=EF,∠EAF=∠EFA=22.5°

∴∠FAB=67.5°,

设AB=x,

则AE=EF=

故选B.

考点:翻折变换的性质

点评:解题的关键是熟练掌握折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网