题目内容

【题目】正方形纸片ABCD的对称中心为O,翻折A使顶点A重合于对角线AC上一点P,EF是折痕:

(1)证明:AE=AF;

(2)尺规作图:在图中作出当点P是OC中点时的EFP(不写画法,保留作图痕迹);完成作图后,标注所作EFP的外接圆心M.

【答案】(1)、证明过程见解析;(2)、答案见解析.

【解析】

试题分析:(1)、设AP交EF于点Q,根据P是A的对称点得出APEF,从而得出AEQ和AFQ全等,从而得到AE=AF;(2)、根据外接圆的圆心画法得出答案.

试题解析:(1)设AP交EF于点Q,P是A的对称点, APEF,

AEQ和AFQ中:点P在AC上,∴∠EAQ=FAQ=45°AQ公共边,AQE=AQF=90°

∴△AEQ≌△AFQ(ASA)AE=AF

(2)、尺规作图:OC中点P

作AP垂直平分线EF、 或PE、PF用角平分线、或过P作垂直线等方法获得EFP

EFP的外接圆心M的位置是EF与AC的交点

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网