题目内容

【题目】奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B处测得最高塔塔顶A的仰角为45°,然后向最高塔的塔基直行90米到达C处,再次测得最高塔塔顶A的仰角为58°.请帮助他们计算出最高塔的高度AD约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)

【答案】最高塔的高度AD约为240

【解析】

根据已知条件求出BD=AD,设DC=x,得出AD=90+x,再根据tan58°=,求出x的值,即可得出AD的值.

∵∠B=45°,ADDB,

∴∠DAB=45°,

BD=AD,

DC=x,则BD=BC+DC=90+x,

AD=90+x,

tan58°===1.60,

解得:x=150,

AD=90+150=240(米),

答:最高塔的高度AD约为240米.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网