题目内容
【题目】如图,平面直角坐标系中,点是直线上一动点,将点向右平移1个单位得到点,点,则的最小值为________.
【答案】
【解析】
设D(-1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,ED,作ES⊥x轴于S,根据题意OE就是OB+CB的最小值,由直线的解析式求得F的坐标,进而求得ED的长,从而求得OS和ES,然后根据勾股定理即可求得OE.
解:设D(-1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,ED,作ES⊥x轴于S,
∵AB∥DC,且AB=OD=OC=1,
∴四边形ABOD和四边形ABCO是平行四边形,
∴AD=OB,OA=BC,
∴AD+OA=OB+BC,
∵AE=AD,
∴AE+OA=OB+BC,
即OE=OB+BC,
∴OB+CB的最小值为OE,
由可知∠AFO=30°,F(-4,0),
∴FD=3,∠FDG=60°,
∴DG=DF=,
∴DE=2DG=3,
∴ES=DE=,DS=DE=,
∴OS=,
∴OE=,
∴OB+CB的最小值为.
练习册系列答案
相关题目