题目内容
【题目】如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为_____.
【答案】
【解析】
分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM=1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.
解:过点E作ME⊥AD,延长ME交BC与N,
∵四边形ABCD是矩形
∴AD∥BC,且ME⊥DA
∴EN⊥BC 且∠A=90°=∠ABC=90°
∴四边形ABNM是矩形
∴AB=MN=5,AM=BN
若ME:EN=1:4,如图1
∵ME:EN=1:4,MN=5
∴ME=1,EN=4
∵折叠
∴BE=AB=5,AP=PE
在Rt△BEN中,BN==3
∴AM=3
在Rt△PME中,PE2=ME2+PM2
AP2=(3﹣AP)2+1
解得AP=
若ME:EN=4:1,则EN=1,ME=4,如 图2
在Rt△BEN中,BN==2
∴AM=2
在Rt△PME中,PE2=ME2+PM2
AP2=(2﹣AP )2+16
解得AP=
若点E在矩形外,如图
∵EN:EM=1:4
∴EN=,EM=
在Rt△BEN中,BN==
∴A=
在Rt△PME中,PE2=ME2+PM2
AP2=(AP﹣)2+()2
解得:AP=5
故答案为,,5.
练习册系列答案
相关题目