题目内容
如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).
(1)当G(4,8)时,则∠FGE= °
(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.
要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).
(1)90;(2)作图见解析,P(7,7),PH是分割线.
【解析】
试题分析:(1)根据勾股定理求出△FEG的三边长,根据勾股定理逆定理可判定△FEG是直角三角形,且∠FGE=90 °.
(2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P在以EF为直径的圆上;另一方面,由于四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,从而OP是正方形的对角线,即点P在∠FOE的角平分线上,因此可得P(7,7),PH是分割线.
试题解析:(1)连接FE,
∵E(8,0),F(0 , 6),G(4,8),
∴根据勾股定理,得FG=,EG=
,FE=10.
∵,即
.
∴△FEG是直角三角形,且∠FGE=90 °.
(2)作图如下:
P(7,7),PH是分割线.
考点:1.网格问题;2.勾股定理和逆定理;3.作图(设计);4.圆周角定理.

练习册系列答案
相关题目