题目内容

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.
(1)求⊙O的半径;
(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.

【答案】
(1)解:如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,

则AD=AF,BD=BE,CE=CF.

∵⊙O为△ABC的内切圆,

∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.

∵∠C=90°,

∴四边形CEOF是矩形,

∵OE=OF,

∴四边形CEOF是正方形.

设⊙O的半径为rcm,则FC=EC=OE=rcm,

在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,

∴AB= =5cm.

∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,

∴4﹣r+3﹣r=5,

解得 r=1,即⊙O的半径为1cm.


(2)解:如图2,过点P作PG⊥BC,垂足为G.

∵∠PGB=∠C=90°,

∴PG∥AC.

∴△PBG∽△ABC,

∵BP=t,

∴PG= = ,BG= =

若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.

①当⊙P与⊙O外切时,

如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.

∵∠PHE=∠HEG=∠PGE=90°,

∴四边形PHEG是矩形,

∴HE=PG,PH=GE,

∴OH=OE﹣HE=1﹣ ,PH=GE=BC﹣EC﹣BG=3﹣1﹣ =2﹣

在Rt△OPH中,

由勾股定理,

解得 t=

②当⊙P与⊙O内切时,

如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.

∵∠MGE=∠OEG=∠OMG=90°,

∴四边形OEGM是矩形,

∴MG=OE,OM=EG,

∴PM=PG﹣MG=

OM=EG=BC﹣EC﹣BG=3﹣1﹣ =2﹣

在Rt△OPM中,

由勾股定理,

解得 t=2.

综上所述,⊙P与⊙O相切时,t= s或t=2s.

另解:外切时,OP2=OD2+DP2.内切时,(t﹣1)2=12的平方加(t﹣2)2


【解析】(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网