题目内容
已知:如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间t(s),解答下列各问题:
(1)求△ABC的面积;
(2)当t为何值时,△PBQ是直角三角形?
(3)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出t的值;不存在请说明理由.
(1)求△ABC的面积;
(2)当t为何值时,△PBQ是直角三角形?
(3)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出t的值;不存在请说明理由.
分析:(1)过点A作AD⊥BC,求出AD的长,利用三角形的面积公式进行解答即可;
(2)①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP中根据BP,BQ的表达式和∠B的度数进行求解即可.
(3)本题可先用△ABC的面积-△PBQ的面积表示出四边形APQC的面积,即可得出y,t的函数关系式,然后另y等于三角形ABC面积的三分之二,可得出一个关于t的方程,如果方程无解则说明不存在这样的t值,如果方程有解,那么求出的t值即可.
(2)①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP中根据BP,BQ的表达式和∠B的度数进行求解即可.
(3)本题可先用△ABC的面积-△PBQ的面积表示出四边形APQC的面积,即可得出y,t的函数关系式,然后另y等于三角形ABC面积的三分之二,可得出一个关于t的方程,如果方程无解则说明不存在这样的t值,如果方程有解,那么求出的t值即可.
解答:解:(1)过点A作AD⊥BC,则AD=
×BC×AB•sin60°=
×3×3×
=
;
(2)设经过t秒△PBQ是直角三角形,
则AP=tcm,BQ=tcm,
△ABC中,AB=BC=3cm,∠B=60°,
∴BP=(3-t)cm,
△PBQ中,BP=(3-t)cm,BQ=tcm,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,
当∠BQP=90°时,BQ=
BP,
即t=
(3-t),t=1(秒),
当∠BPQ=90°时,BP=
BQ,
3-t=
t,t=2(秒),
答:当t=1秒或t=2秒时,△PBQ是直角三角形.
(3)过P作PM⊥BC于M,
△BPM中,sin∠B=
,
∴PM=PB•sin∠B=
(3-t),
∴S△PBQ=
BQ•PM=
•t•
(3-t),
∴y=S△ABC-S△PBQ=
×32×
-
×t×
(3-t)
=
t2-
t+
,
∴y与t的关系式为y=
t2-
t+
,
假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的
,
则S四边形APQC=
S△ABC,
∴
t2-
t+
=
×
×32×
,
∴t2-3t+3=0,
∵(-3)2-4×1×3<0,
∴方程无解,
∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的
.
1 |
2 |
1 |
2 |
| ||
2 |
9
| ||
4 |
(2)设经过t秒△PBQ是直角三角形,
则AP=tcm,BQ=tcm,
△ABC中,AB=BC=3cm,∠B=60°,
∴BP=(3-t)cm,
△PBQ中,BP=(3-t)cm,BQ=tcm,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,
当∠BQP=90°时,BQ=
1 |
2 |
即t=
1 |
2 |
当∠BPQ=90°时,BP=
1 |
2 |
3-t=
1 |
2 |
答:当t=1秒或t=2秒时,△PBQ是直角三角形.
(3)过P作PM⊥BC于M,
△BPM中,sin∠B=
PM |
PB |
∴PM=PB•sin∠B=
| ||
2 |
∴S△PBQ=
1 |
2 |
1 |
2 |
| ||
2 |
∴y=S△ABC-S△PBQ=
1 |
2 |
| ||
2 |
1 |
2 |
| ||
2 |
=
| ||
4 |
3
| ||
4 |
9
| ||
4 |
∴y与t的关系式为y=
| ||
4 |
3
| ||
4 |
9
| ||
4 |
假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的
2 |
3 |
则S四边形APQC=
2 |
3 |
∴
| ||
4 |
3
| ||
4 |
9
| ||
4 |
2 |
3 |
1 |
2 |
| ||
2 |
∴t2-3t+3=0,
∵(-3)2-4×1×3<0,
∴方程无解,
∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的
2 |
3 |
点评:本题考查的是等边三角形的性质、直角三角形的判定及三角形的面积公式,根据题意作出辅助线,利用数形结合求解是解答此题的关键.
练习册系列答案
相关题目