题目内容

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.
分析:先根据角平分线的定义及平行线的性质证明△BDF和△CEF是等腰三角形,再由等腰三角形的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=11.
解答:解:∵BF平分∠ABC,
∴∠DBF=∠CBF,
∵DE∥BC,∴∠CBF=∠DFB,
∴∠DBF=∠DFB,
∴BD=DF,
同理FE=EC,
∴△AED的周长=AD+AE+ED=AB+AC=6+5=11.
点评:本题考查等腰三角形的性质,平行线的性质及角平分线的性质.有效的进行线段的等量代换是正确解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网