题目内容
如图,延长四边形ABCD对边AD,BC交于F;DC,AB交于E.如果∠AED,∠AFB平分线交于O,∠A=60°,∠BCD=130°,则∠EOF=分析:根据三角形的外角性质求出∠EOF=∠EAF+
∠AFB+
∠AED,∠BCD=∠AFB+∠CDF,代入求出∠EOF=
(∠EAF+∠BCD),代入求出即可.
1 |
2 |
1 |
2 |
1 |
2 |
解答:解:∵角AED,角AFB平分线交于O,
∴∠EOF=∠OAB+
∠AFB+∠OAD+
∠AED,
=∠EAF+
∠AFB+
∠AED ①,
又∠BCD=∠AFB+∠CDF,
=∠AFB+∠EAF+∠AED ②,
由①②得∠EOF=∠EAF+
∠AFB+
∠AED
=
(∠EAF+∠EAF+∠AFB+∠AED)
=
∠EAF+
∠BCD
=
×60°+
×130°
=95°.
故答案为:95°.
∴∠EOF=∠OAB+
1 |
2 |
1 |
2 |
=∠EAF+
1 |
2 |
1 |
2 |
又∠BCD=∠AFB+∠CDF,
=∠AFB+∠EAF+∠AED ②,
由①②得∠EOF=∠EAF+
1 |
2 |
1 |
2 |
=
1 |
2 |
=
1 |
2 |
1 |
2 |
=
1 |
2 |
1 |
2 |
=95°.
故答案为:95°.
点评:本题主要考查对三角形的内角和定理,三角形的外角性质等知识点的理解和掌握,能熟练地运用性质进行推理和计算是解此题的关键.
练习册系列答案
相关题目