题目内容
如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE=S△ABP,其中正确的是
- A.①③
- B.①②④
- C.①②③
- D.②③
C
分析:根据三角形全等的判定和性质以及三角形内角和定理逐条分析判断.
解答:在△ABC中,AD、BE分别平分∠BAC、∠ABC,
∵∠ACB=90°,
∴∠A+∠B=90°,
又∵AD、BE分别平分∠BAC、∠ABC,
∴∠BAD+∠ABE=(∠A+∠B)=45°,
∴∠APB=135°,故①正确.
∴∠BPD=45°,
又∵PF⊥AD,
∴∠FPB=90°+45°=135°,
∴∠APB=∠FPB,
又∵∠ABP=∠FBP,
BP=BP,
∴△ABP≌△FBP,
∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.
在△APH和△FPD中,
∵∠APH=∠FPD=90°,
∠PAH=∠BAP=∠BFP,
PA=PF,
∴△APH≌△FPD,
∴AH=FD,
又∵AB=FB,
∴AB=FD+BD=AH+BD.故③正确.
∵△ABP≌△FBP,△APH≌△FPD,
∴S四边形ABDE=S△ABP+S△BDP+S△APH-S△EOH+S△DOP=S△ABP+S△ABP-S△EOH+S△DOP=2S△ABP-S△EOH+S△DOP.
故选C.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
分析:根据三角形全等的判定和性质以及三角形内角和定理逐条分析判断.
解答:在△ABC中,AD、BE分别平分∠BAC、∠ABC,
∵∠ACB=90°,
∴∠A+∠B=90°,
又∵AD、BE分别平分∠BAC、∠ABC,
∴∠BAD+∠ABE=(∠A+∠B)=45°,
∴∠APB=135°,故①正确.
∴∠BPD=45°,
又∵PF⊥AD,
∴∠FPB=90°+45°=135°,
∴∠APB=∠FPB,
又∵∠ABP=∠FBP,
BP=BP,
∴△ABP≌△FBP,
∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.
在△APH和△FPD中,
∵∠APH=∠FPD=90°,
∠PAH=∠BAP=∠BFP,
PA=PF,
∴△APH≌△FPD,
∴AH=FD,
又∵AB=FB,
∴AB=FD+BD=AH+BD.故③正确.
∵△ABP≌△FBP,△APH≌△FPD,
∴S四边形ABDE=S△ABP+S△BDP+S△APH-S△EOH+S△DOP=S△ABP+S△ABP-S△EOH+S△DOP=2S△ABP-S△EOH+S△DOP.
故选C.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关题目