题目内容
已知二次函数y=ax2+bx+c的系数满足abc<0,则它的图象可能是
- A.
- B.
- C.
- D.
C
分析:当a>0时,二次函数开口向上,判断B、D中c的符号,再确定b的符号,判断B、D的正误;
当a<0时,同样的方法判断A、C的正误.
解答:当a>0时,因为abc<0,所以b、c异号,由D图可知c<0,
故b>0,∴-<0,即函数对称轴在y轴左侧,选项(D)不符合题意.
由B图可知c>0,故b<0,∴->0,即函数对称轴在y轴右侧,选项(B)不符合题意.
显然a<0时,开口向下,因为abc<0,所以b、c同号,
对于A、由图象可知c>0,则b>0,对称轴->0,即函数对称轴在y轴右侧,A不正确;
对于 C,c>0,则b>0,对称轴->0,C选项正确.
故选C.
点评:考查了二次函数图象与系数的关系,根据二次函数图象开口向上或向下,分a>0或a<0两种情况分类考虑.另外还要注意c值是抛物线与y轴交点的纵坐标,还要注意对称轴的位置或顶点坐标的位置等.是常考题.
分析:当a>0时,二次函数开口向上,判断B、D中c的符号,再确定b的符号,判断B、D的正误;
当a<0时,同样的方法判断A、C的正误.
解答:当a>0时,因为abc<0,所以b、c异号,由D图可知c<0,
故b>0,∴-<0,即函数对称轴在y轴左侧,选项(D)不符合题意.
由B图可知c>0,故b<0,∴->0,即函数对称轴在y轴右侧,选项(B)不符合题意.
显然a<0时,开口向下,因为abc<0,所以b、c同号,
对于A、由图象可知c>0,则b>0,对称轴->0,即函数对称轴在y轴右侧,A不正确;
对于 C,c>0,则b>0,对称轴->0,C选项正确.
故选C.
点评:考查了二次函数图象与系数的关系,根据二次函数图象开口向上或向下,分a>0或a<0两种情况分类考虑.另外还要注意c值是抛物线与y轴交点的纵坐标,还要注意对称轴的位置或顶点坐标的位置等.是常考题.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x | -0.1 | -0.2 | -0.3 | -0.4 |
y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |