ÌâÄ¿ÄÚÈÝ
ÏÂÁÐ˵·¨£º¢Ùµ±m£¾1ʱ£¬·Öʽ
×ÜÓÐÒâÒ壻¢ÚÈô·´±ÈÀýº¯Êýy=
µÄͼÏó¾¹ýµã£¨
£¬
£©£¬ÔòÔÚÿ¸ö·ÖÖ§ÄÚyËæ×ÅxµÄÔö´ó¶øÔö´ó£»¢Û¹ØÓÚxµÄ·½³Ì
-2=
ÓÐÕýÊý½â£¬Ôòm£¼6£»¢ÜÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬BC=a£¬AC=b£¬AB=c£¬AB±ßÉϵĸßCD=h£¬ÄÇôÒÔ
¡¢
¡¢
³¤Îª±ßµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐΣ®ÆäÖÐÕýÈ·µÄ½áÂ۵ĸöÊýÊÇ£¨¡¡¡¡£©
1 |
x2-2x+m |
k |
x |
-m |
3 | 3m |
x |
x-3 |
m |
x-3 |
1 |
a |
1 |
b |
1 |
h |
·ÖÎö£º¢Ù½«x2-2x+mÅä·½£¬ÔÙ¸ù¾Ým£¾1ÅжϷÖĸµÄ·ûºÅ£¬
¢Ú±¾ÌâÒþº¬Ìõ¼þΪm£¼0£¬ÓÉk=xyÅжÏkµÄ·ûºÅ£»
¢ÛÏÈÇó½â£¬ÔÙ¸ù¾Ýx£¾0ÇÒx¡Ù3ÇómµÄÈ¡Öµ·¶Î§£»
¢ÜÀûÓù´¹É¶¨ÀíµÄÄ涨Àí½øÐÐÅжϣ®
¢Ú±¾ÌâÒþº¬Ìõ¼þΪm£¼0£¬ÓÉk=xyÅжÏkµÄ·ûºÅ£»
¢ÛÏÈÇó½â£¬ÔÙ¸ù¾Ýx£¾0ÇÒx¡Ù3ÇómµÄÈ¡Öµ·¶Î§£»
¢ÜÀûÓù´¹É¶¨ÀíµÄÄ涨Àí½øÐÐÅжϣ®
½â´ð£º½â£º¢Ù¡ßx2-2x+m=£¨x-1£©2+m-1£¬¡àµ±m£¾1ʱ£¬x2-2x+m£¾0£¬·ÖʽÓÐÒâÒ壬½áÂÛÕýÈ·£»
¢ÚÓÉ
ÓÐÒâÒå¿ÉÖª£¬m£¼0£¬Ôòk=
•
£¼0£¬Í¼ÏóÔÚ¶þ¡¢ËÄÏóÏÞ£¬ÔÚÿ¸ö·ÖÖ§ÄÚyËæ×ÅxµÄÔö´ó¶øÔö´ó£¬½áÂÛÕýÈ·£»
¢Û½â·½³ÌµÃx=6-m£¬ÓÉx£¾0¿ÉµÃm£¼6£¬µ«x¡Ù3£¬¹Êm¡Ù3£¬¹ÊӦΪm£¼6ÇÒm¡Ù3£¬½áÂÛ´íÎó£»
¢ÜÒÀÌâÒ⣬µÃa2+b2=c2£¬ab=ch£¬ËùÒÔ£¬
+
=
=
=
£¬½áÂÛÕýÈ·£»
ÕýÈ·µÄÓÐÈý¸ö£®
¹ÊÑ¡C£®
¢ÚÓÉ
-m |
-m |
3 | 3m |
¢Û½â·½³ÌµÃx=6-m£¬ÓÉx£¾0¿ÉµÃm£¼6£¬µ«x¡Ù3£¬¹Êm¡Ù3£¬¹ÊӦΪm£¼6ÇÒm¡Ù3£¬½áÂÛ´íÎó£»
¢ÜÒÀÌâÒ⣬µÃa2+b2=c2£¬ab=ch£¬ËùÒÔ£¬
1 |
a2 |
1 |
b2 |
a2+b2 |
a2b2 |
c2 |
c2h2 |
1 |
h2 |
ÕýÈ·µÄÓÐÈý¸ö£®
¹ÊÑ¡C£®
µãÆÀ£º±¾Ì⿼²éÁ˹´¹É¶¨Àí¼°ÆäÄ涨Àí£¬·Öʽ·½³ÌµÄ½â£¬·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌص㣮¹Ø¼üÊÇÊìÁ·ÕÆÎÕ¸÷֪ʶµãµÄ½âÌâ·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýy=kx+bµÄͼÏóÈçͼËùʾ£¬Ôò¶ÔÓÚº¯Êýy=
£¬ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
kb |
x |
A¡¢µ±xÔö´óʱ£¬yÒ²Ôö´ó |
B¡¢µ±xÔö´óʱ£¬y¼õС |
C¡¢¸Ãº¯ÊýµÄͼÏóλÓÚÒ»¡¢ÈýÏóÏÞ |
D¡¢¸Ãº¯ÊýµÄͼÏóλÓÚ¶þ¡¢ËÄÏóÏÞ |