题目内容
【题目】如图,在△ABC中,AC=BC,∠ACB=90°,M是AB边上的中点,点D、E分别是AC、BC边上的动点,连接DM 、ME、CM、DE, DE与CM相交于点F且∠DME=90°.则下列5个结论: (1)图中共有两对全等三角形;(2)△DEM是等腰三角形; (3)∠CDM=∠CFE;(4)AD2+BE2=DE2;(5)四边形CDME的面积发生改变.其中正确的结论有( )个.
A.2B.3C.4D.5
【答案】B
【解析】
根据等腰三角形的性质,三角形内角和定理,得出:△AMC≌△BMC、△AMD≌△CME、△CMD≌△BME,根据全等三角形的性质得出DM=ME得出△DEM是等腰三角形,及∠CDM=∠CFE,再逐个判断 即可得出结论.
解:如图
在Rt△ABC中,∠ACB=90°,M为AB中点,AB=BC
∴AM=CM=BM,∠A=∠B=∠ACM=∠BCM=45°,∠AMC=∠BMC=90°
∵∠DME=90°.
∴∠1+∠2=∠2+∠3=∠3+∠4=90°
∴∠1=∠3,∠2=∠4
在△AMC和△BMC中
∴△AMC≌△BMC
在△AMD和△CME中
∴△AMD≌△CME
在△CDM和△BEM
∴△CMD≌△CME
共有3对全等三角形,故(1)错误
∵△AMD≌△BME
∴DM=ME
∴△DEM是等腰三角形,(2)正确
∵∠DME=90°.
∴∠EDM=∠DEM=45°,
∴∠CDM=∠1+∠A=∠1+45°,
∴∠EDM=∠3+∠DEM=∠3+45°,
∴∠CDM=∠CFE,故(3)正确
在Rt△CED中,
∵CE=AD,BE=CD
∴ 故(4)正确
(5)∵△ADM≌△CEM
∴
∴ 不变,故(5)错误
故正确的有3个
故选:B
练习册系列答案
相关题目