题目内容

如图,把菱形ABCD沿着BD的方向平移到菱形A′B′C′D/′的位置.
(1)求证:重叠部分的四边形B′EDF是菱形;
(2)若重叠部分的四边形B′EDF′面积是把菱形ABCD面积的一半,且BD=
2
,求则此菱形移动的距离.
(1)证明:有平移的特征知A′B′AB,又CDAB,
∴A′B′CD,同理B′C′AD.
∴四边形BEDF为平行四边形.
∵四边形ABCD是菱形,
∴AB=AD.
∴∠ABD=∠ADB.
又∵∠A′B′D=∠ABD,
∴∠A′B′D=∠ADB.
∴FB′=FD.
∴四边形B′EDF为菱形.

(2)∵菱形B′EDF与菱形ABCD有一个公共角,
∴此两个菱形对应角相等又对应边成比例.
∴此两个菱形相似.
∵S菱形ABCD:S菱形FB'ED=2:1,
B′D
BD
=
1
2

B′D=
2
2
×
2
=1

∴平移的距离BB′=BD-B′D=
2
-1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网