题目内容
【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为( )
A. 2 B. 8 C. 2 D. 2
【答案】C
【解析】连结BE,设⊙O的半径为R,由OD⊥AB,根据垂径定理得AC=BC=AB=4,在Rt△AOC中,OA=R,OC=R-CD=R-2,根据勾股定理得到(R-2)2+42=R2,解得R=5,则OC=3,由于OC为△ABE的中位线,则BE=2OC=6,再根据圆周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可计算出CE.
解:连结BE,设⊙O的半径为R,如图所示,
∵OD⊥AB,
∴AC=BC=AB=×8=4,
在Rt△AOC中,OA=R,OC=R-CD=R-2,
∵OC2+AC2=OA2,
∴(R-2)2+42=R2,解得R=5,
∴OC=5-2=3,
∴BE=2OC=6,
∵AE为直径,
∴∠ABE=90°,
在Rt△BCE中, .
考点: 1.垂径定理;2.勾股定理;3.三角形中位线定理;4.圆周角定理.
“点睛”本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关题目
【题目】据报道,某公司的33名职工的月工资如下(单位:元):
职务 | 董事长 | 副董事长 | 总经理 | 董事 | 经理 | 管理员 | 职员 |
人数 | 1 | 1 | 2 | 1 | 5 | 3 | 20 |
工资 | 5500 | 5000 | 3500 | 3230 | 2730 | 2200 | 1500 |
(1)该公司职工的月工资的平均数=元、中位数=元、众数=元.
(2)假设副董事长的工资从5 000元涨到15 000元,董事长的工资从5 500元涨到28 500元,那么新的平均工资=元、中位数=元、众数=元.(精确到1元)
(3)你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?