题目内容

【题目】已知四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OC、OA、AC.
(1)如图①,求∠OCA的度数;
(2)如图②,连接OB、OB与AC相交于点E,若∠COB=90°,OC=2 ,求BC的长和阴影部分的面积.

【答案】
(1)解:∵四边形ABCD是⊙O的内接四边形,

∴∠ABC+∠D=180°,

∵∠ABC=2∠D,

∴∠D+2∠D=180°,

∴∠D=60°,

∴∠AOC=2∠D=120°,

∵OA=OC,

∴∠OAC=∠OCA=30°


(2)解:∵∠COB=3∠AOB,

∴∠AOC=∠AOB+3∠AOB=120°,

∴∠AOB=30°,

∴∠COB=∠AOC﹣∠AOB=90°,

在Rt△OCE中,OC=2

∴OE=OCtan∠OCE=2 tan30°=2 × =2,

∴SOEC= OEOC= ×2×2 =2

∴S扇形OBC= =3π,

∴S阴影=S扇形OBC﹣SOEC=3π﹣2


【解析】(1)根据四边形ABCD是⊙O的内接四边形得到∠ABC+∠D=180°,根据∠ABC=2∠D得到∠D+2∠D=180°,从而求得∠D=60°,最后根据OA=OC得到∠OAC=∠OCA=30°;(2)由∠COB为直角,然后利用S阴影=S扇形OBC﹣SOEC求解.
【考点精析】掌握圆内接四边形的性质和扇形面积计算公式是解答本题的根本,需要知道把圆分成n(n≥3):1、依次连结各分点所得的多边形是这个圆的内接正n边形2、经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网