题目内容
【题目】如图,在平面直角坐标系中,直线AB与y轴交于点,与反比例函数在第二象限内的图象相交于点.
(1)求直线AB的解析式;
(2)将直线AB向下平移9个单位后与反比例函数的图象交于点C和点E,与y轴交于点D,求的面积;
(3)设直线CD的解析式为,根据图象直接写出不等式的解集.
【答案】(1));(2)的面积为18;(3)或.
【解析】
(1)将点A(-1,a)代入反比例函数求出a的值,确定出A的坐标,再根据待定系数法确定出一次函数的解析式;
(2)根据直线的平移规律得出直线CD的解析式为y=-x-2,从而求得D的坐标,联立方程求得交点C、E的坐标,根据三角形面积公式求得△CDB的面积,然后由同底等高的两三角形面积相等可得△ACD与△CDB面积相等;
(3)根据图象即可求得.
(1))∵点在反比例函数的图象上,
∴,
∴,
∵点,
∴设直线AB的解析式为,
∵直线AB过点,
∴,解得,
∴直线AB的解析式为;
(2)∵将直线AB向下平移9个单位后得到直线CD的解析式为,
∴,
∴,
联立,解得或,
∴,,
连接AC,则的面积,
由平行线间的距离处处相等可得与面积相等,
∴的面积为18.
(3)∵,,
∴不等式的解集是:或.
练习册系列答案
相关题目