题目内容
如图AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为 ▲ .
如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为( )
A. 75° B. 65° C. 55° D. 50°
如图,直线 与轴、轴分别交于,点的坐标为 ,是直线在第一象限内的一个动点
(1)求⊿的面积与的函数解析式,并写出自变量的取值范围?
(2)过点作轴于点, 作轴于点,连接,是否存在一点使得的长最小,若存在,求出的最小值;若不存在,请说明理由 ?
为了解某班学生双休日户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:则关于“户外活动时间”这组数据的众数、中位数、平均数分别是( )
A. B.
C. D.
已知⊙O的弦CD与直径AB垂直于F,点E在CD上,且AE=CE.
(1)求证:CA2=CE CD;
(2)已知CA=5,EC=3,求sin∠EAF.
在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为( )
A. 2,22.5° B. 3,30° C. 3,22.5° D. 2,30°
如图,一块材料的形状是锐角三角形ABC,边BC=12 cm,高AD=8 cm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?
如图,从一个多边形的某一条边上的一点(不与端点重合)出发,分别连接这个点与其他所有顶点,可以把这个多边形分割成若干个三角形,由三角形、四边形、五边形为例,你能总结出什么规律?n边形呢?
如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组的解集是( )
A. B. C. D.