题目内容
【题目】一只小球落在数轴上的某点,第一次从向左跳1个单位到,第二次从向右跳2个单位到,第三次从向左跳3个单位到,第四次从向右跳4个单位到,若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点所表示的数是__________;若小球按以上规律跳了2n次时,它落在数轴上的点所表示的数恰好是,则这只小球的初始位置点所表示的数是__________.
【答案】3, 2.
【解析】
根据题意,可以发现题目中每次跳跃后相对于初始点的距离,从而可以解答本题.
解:由题意可得,
小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是6÷2=3,
小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是:n+2﹣(2n÷2)=2,
故答案为:3,2.
练习册系列答案
相关题目