题目内容
【题目】如图,已知在△ABC中,D是AB的中点,且∠ACD=∠B,若 AB=10,求AC的长.
【答案】5.
【解析】试题分析:
由点D是AB的中点,AB=10,易得AD=5;再由∠ACD=∠B,∠A=∠A,可证得:
△ACD∽△ABC,从而可得: ,由此得到:AC2=ADAB=50即可解得AC的值.
试题解析:
∵∠ACD=∠B,∠A=∠A,
∴△ACD∽△ABC.
∴,
∴AC2=ADAB.
∵D是AB的中点,AB=10,
∴AD=AB=5,
∴AC2=50.
解得AC=.
【题型】解答题
【结束】
22
【题目】口袋中装有四个大小完全相同的小球,把它们分别标号1,2,3,4,从中随机摸出一个球,记下数字后放回,再从中随机摸出一个球,利用树状图或者表格求出两次摸到的小球数和等于4的概率.
【答案】 .
【解析】试题分析:
根据题意列表如下,由表可以得到所有的等可能结果,再求出所有结果中,两次所摸到小球的数字之和为4的次数,即可计算得到所求概率.
试题解析:
列表如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
由表可知,共有16种等可能事件,其中两次摸到的小球数字之和等于4的有(3,1)、(2,2)和(1,3),共计3种,
∴P(两次摸到小球的数字之和等于4)=.
【题目】进入六月以来,西瓜出现热卖.佳佳水果超市用760元购进甲、乙两个品种的西瓜,销售完共获利360元,其进价和售价如表:
甲品种 | 乙品种 | |
进价(元/千克) | 1.6 | 1.4 |
售价(元/千克) | 2.4 | 2 |
(1)求佳佳水果超市购进甲、乙两个品种的西瓜各多少千克?
(2)由于销售较好,该超市决定,按进价再购进甲,乙两个品种西瓜,购进乙品种西瓜的重量不变,购进甲品种西瓜的重量是原来的2倍,甲品种西瓜按原价销售,乙品种西瓜让利销售.若两个品种的西瓜售完获利不少于560元,问乙品种西瓜最低售价为多少元?
【题目】为了更好治理某湖水质,保护环境,市治污公司决定购买台污水处理设备.现有,两种型号的设备,其中每台的价格,月处理污水量如下表.经调查:购买一台型设备比购买一台型设备多万元,购买台型设备比购买台型设备少万元.
型 | 型 | |
价格(万元/台) | ||
处理污水量(吨/月) |
()求,的值.
()经预算:市治污公司购买污水处理设备的资金不超过万元,你认为该公司有哪几种购买方案.
()在()问的条件下,若每月要求处理该湖的污水量不低于吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.