题目内容
【题目】如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.
(1)求证:△ACD≌△CBE;
(2)若AD=12,DE=7,求BE的长.
【答案】(1)证明见解析;(2)BE=5.
【解析】
(1)根据垂直定义求出∠BEC=∠ACB=∠ADC,根据等式性质求出∠ACD=∠CBE,根据AAS证明△BCE≌△CAD;
(2)根据全等三角形的对应边相等得到AD=CE,CD=BE,再根据AD=12,DE=7,即可解答.
(1)∵∠ACB=90°,BE⊥CE,
∴∠ECB+∠ACD=90°∠ECB+∠CBE=90°,
∴∠ACD=∠CBE,
∵AD⊥CE,BE⊥CE,
∴∠ADC=∠CEB=90°,
∵AC=BC,
∴△ACD≌△CBE;
(2)∵△ACD≌△CBE,
∴AD=CE,CD=BE,
∵AD=12,DE=7,
∴BE=CD=CE-DE=12-7=5.
练习册系列答案
相关题目