题目内容

某住宅小区将要举办“迎奥运”知识竞赛,物业的工作人员在购买奖品时,了解到如下信息:

(1)求一盒“福娃”和一枚徽章各多少元?
(2)物业公司公布本次活动奖品发放方案如下:
一等奖 二等奖 三等奖
1盒福娃和1枚徽章 1盒福娃 1枚徽章
如果在这次活动中,用于购买奖品的总费用不少于1500元但不超过1600元,设一、二、三等奖共20名,其中一等奖2名,那么二等奖和三等奖应各设多少名?
分析:(1)首先根据题意设一盒“福娃”x元,一枚徽章y元,再根据等量关系为:2盒福娃价格+3枚徽章价格=270元,3盒福娃价格+2枚徽章价格=380元,可以列出方程组,解可得答案;
(2)二等奖a名,则三等奖(20-2-a)名,根据不等关系“总费用不少于1500元但不超过1600元”可得不等式组,解不等式组,求出整数解即可.
解答:解:(1)设一盒“福娃”x元,一枚徽章y元,由题意得:
2x+3y=270
3x+2y=380

解得:
x=120
y=10

答:一盒“福娃”120元,一枚徽章10元;

(2)设二等奖a名,则三等奖(20-2-a)名,由题意得:
120a+10(20-2-a)+2×120+2×10≥1500
120a+10(20-2-a)+2×120+2×10≤1600

解得:9
7
11
≤a≤10
6
11

∵a为整数,
∴a=10,
则三等奖人数为:20-2-10=8(名),
答:二等奖10名,则三等奖8名.
点评:此题主要考查了二元一次方程组的应用,不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组或不等式组,再求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网