题目内容
【题目】如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:
①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )
A.②④⑤⑥
B.①③⑤⑥
C.②③④⑥
D.①③④⑤
【答案】D
【解析】解:①∵AB是⊙O的直径,
∴∠ADB=90°,
∴AD⊥BD,
②∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,
∴∠AOC≠∠AEC,
③∵OC∥BD,
∴∠OCB=∠DBC,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠OBC=∠DBC,
∴CB平分∠ABD,
④∵AB是⊙O的直径,
∴∠ADB=90°,
∴AD⊥BD,
∵OC∥BD,
∴∠AFO=90°,
∵点O为圆心,
∴AF=DF,
⑤由④有,AF=DF,
∵点O为AB中点,
∴OF是△ABD的中位线,
∴BD=2OF,
⑥∵△CEF和△BED中,没有相等的边,
∴△CEF与△BED不全等,
故选D
①由直径所对圆周角是直角,
②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,
③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;
④用半径垂直于不是直径的弦,必平分弦;
⑤用三角形的中位线得到结论;
⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.此题是圆综合题,主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质.
练习册系列答案
相关题目