题目内容
【题目】如图,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF;
(2)若⊙O的半径为5,cos∠BCD=,求线段AD的长.
【答案】(1)证明见解析;(2)AD=8.
【解析】
试题分析:(1)由BF是⊙O的切线,AB是⊙O的直径,根据切线的性质,即可得BF⊥AB,又由AB⊥CD,即可得CD∥BF;
(2)又由AB是⊙O的直径,可得∠ADB=90°,由圆周角定理,可得∠BAD=∠BCD,然后由⊙O的半径为5,cos∠BCD=,即可求得线段AD的长.
(1)证明:∵BF是⊙O的切线,AB是⊙O的直径,
∴BF⊥AB,
∵CD⊥AB,
∴CD∥BF;
(2)解:∵AB是⊙O的直径,
∴∠ADB=90°,
∵⊙O的半径5,
∴AB=10,
∵∠BAD=∠BCD,
∴cos∠BAD=cos∠BCD==,
∴AD=cos∠BADAB=×10=8,
∴AD=8.
练习册系列答案
相关题目