题目内容
如图,已知:∠1与∠2互补,∠A=∠D,求证:AB∥CD.
证明:∵∠1=∠CGD,∠1与∠2互补,
∴∠CGD+∠2=180°,
∴AF∥ED,
∴∠A+∠AED=180°,
∵∠A=∠D,
∴∠D+∠AED=180°,
∴AB∥CD.
分析:由对顶角相等得到一对角相等,根据已知一对角互补,得到同旁内角互补,利用同旁内角互补两直线平行得到AF与ED平行,由两直线平行同旁内角互补得到一对角互补,等量代换得到∠D与∠AED互补,利用同旁内角互补两直线平行即可得证.
点评:此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
∴∠CGD+∠2=180°,
∴AF∥ED,
∴∠A+∠AED=180°,
∵∠A=∠D,
∴∠D+∠AED=180°,
∴AB∥CD.
分析:由对顶角相等得到一对角相等,根据已知一对角互补,得到同旁内角互补,利用同旁内角互补两直线平行得到AF与ED平行,由两直线平行同旁内角互补得到一对角互补,等量代换得到∠D与∠AED互补,利用同旁内角互补两直线平行即可得证.
点评:此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
练习册系列答案
相关题目