题目内容
【题目】若∠C=α,∠EAC+∠FBC=β
(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则α与β有何关系?并说明理由.
(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与α、β的关系是______.(用α、β表示)
(3)如图③,若α≥β,∠EAC与∠FBC的平分线相交于P1,∠EAP1与∠FBP1的平分线交于P2 ;依此类推,则∠P5=______.(用α、β表示)
【答案】 ∠APB=α-β ∠P5=α-β
【解析】试题分析:(1)根据角平分线的定义表示出∠MAC+∠NCB,再根据两直线平行,内错角相等可得∠C=∠MAC+∠NBC;
(2)根据角平分线的定义表示出∠PAC+∠PBC,利用三角形的一个外角等于与它不相邻的两个内角的和列式整理即可得解;
(3)根据(2)的结论分别表示出∠P1、∠P2…,从而得解.
试题解析:
解:(1)∵AM是∠EAC的平分线,BN是∠FBC的平分线,
∴∠MAC+∠NCB=∠EAC+∠FBC=β,
∵AM∥BN,
∴∠C=∠MAC+∠NCB,
即α=β;
(2)∵∠EAC的平分线与∠FBC平分线相交于P,
∴∠PAC+∠PBC=∠EAC+∠FBC=β,
∴∠C=∠APB+(∠PAC+∠PBC),
∴α=∠APB+β,
即∠APB=α-β;
(3)由(2)得,∠P1=∠C-(∠PAC+∠PBC)=α-β,
∠P2=∠P1-(∠P2AP1+∠P2BP1),
=α-β-β=α-β,
∠P3=α-β-β=α-β,
∠P4=α-β-β=α-β,
∠P5=α-β-β=α-β.
练习册系列答案
相关题目