题目内容
下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )
A. 4个 B. 3个 C. 2个 D. 1个
为了开展阳光体育运动,让学生每天能锻炼一小时,某学校去体育用品商店购买篮球与足球,篮球每只定价100元,足球每只定价50元.体育用品商店向学校提供两种优惠方案:①买一只篮球送一只足球;②篮球和足球都按定价的80%付款.现学校要到该体育用品商店购买篮球30只,足球x只(x>30).
(1)若该学校按方案①购买,篮球需付款 元,足球需付款 元(用含x的式子表示);
若该学校按方案②购买,篮球需付款 元,足球需付款 元(用含x的式子表示);
(2)若x=40,请通过计算说明按方案①、方案②哪种方案购买较为合算?
如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是( )
A. OC∥AE B. EC=BC C. ∠DAE=∠ABE D. AC⊥OE
已知一次函数,其中从1,-2中随机取一个值,从-1,2,3中随机取一个值,则该一次函数的图象经过一,二,三象限的概率为__________
如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
A. r B. r C. r D. 2r
我们来定义一种新运算:对于任意实数x、y,“※”为a※b=(a+1)(b+1)﹣1
(1)计算(﹣3)※9
(2)嘉琪研究运算“※”之后认为它满足交换律,你认为她的判断 (正确、错误)
(3)请你帮助嘉琪完成她对运算“※”是否满足结合律的证明.
证明:由已知把原式化简得a※b=(a+1)(b+1)﹣1=ab+a+b
∵(a※b)※c=(ab+a+b)※c=
a※(b※c)=
∴
∴运算“※”满足结合律.
观察下列运算过程:
请运用上面的运算方法计算:=_____.
《九章算术》中有一题:“今有人共买鸡,人出九,盈十;人出六,不足十六.问人数、鸡价各几何?”题意是:“有若干人凑钱合伙买鸡,如果每人出9文钱,多出11文钱;如果每人出6文钱,还差16文钱.问买鸡的人数、鸡的价钱各是多少?”请解答此题.
已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为
A.2B.3C.5D.13