题目内容
【题目】如图,四边形ABCD内接于⊙O,∠BAD =90°,AC是对角线.点E在BC的延长线上,且∠CED =∠BAC.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)BA与CD的延长线交于点F,若DE∥AC,AB=4,AD =2,求AF的长.
【答案】(1)DE与⊙O相切,证明见解析;(2).
【解析】
(1)连接BD,先根据圆周角定理证明BD是⊙O的直径,证明∠BDC+∠CDE=90°,即BD⊥DE,即可得出DE与⊙O相切;
(2)先根据平行线的性质得∠BHC=∠BDE=90°,由垂径定理得AH=CH,由垂直平分线的性质得BC=AB=4,CD=AD=2,证明△FAD∽△FCB,列比例式得CF=2AF,设AF=x,则DF=CF-CD=2x-2,根据勾股定理列方程可解答.
解:(1)DE与⊙O相切,
理由是:连接BD,如下图,
∵四边形ABCD内接于⊙O,∠BAD=90°,
∴BD是⊙O的直径,即点O在BD上,
∴∠BCD=90°,
∴∠CED+∠CDE=90°.
∵∠CED=∠BAC,
又∵∠BAC=∠BDC,
∴∠CED=∠BDC,
∴∠BDC+∠CDE=90°,即∠BDE=90°,
∴DE⊥BD于点D,
∴DE与⊙O相切.
(2)如下图,BD与AC交于点H,
∵DE∥AC,
∴∠BHC=∠BDE=90°.
∴BD⊥AC.
∴AH=CH.
∴BC=AB=4,CD=AD=2.
∵∠FAD=∠FCB=90°,∠F=∠F,
∴△FAD∽△FCB,
,
∴CF=2AF,
设AF=x,则DF=CF-CD=2x-2.
在Rt△ADF中,DF2=AD2+AF2,
∴(2x-2)2=22+x2.
解得: (舍去),
.
【题目】如图1,,,是郑州市二七区三个垃圾存放点,点,分别位于点的正北和正东方向,米.八位环卫工人分别测得的长度如下表:
甲 | 丁 | 丙 | 丁 | 戊 | 戌 | 申 | 辰 | |
(单位:) | 84 | 76 | 78 | 82 | 70 | 84 | 86 | 80 |
他们又调查了各点的垃圾量,并绘制了下列间不完整的统计图2.
(1)表中的中位数是 、众数是 ;
(2)求表中长度的平均数;
(3)求处的垃圾量,并将图2补充完整;
(4)用(2)中的作为的长度,要将处的垃圾沿道路都运到处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.