题目内容
【题目】如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截,在下面三个式子只,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并写出对应的推理过程
题设已知;______
结论求证:______
理由:
【答案】;
【解析】
可以由①②得到③:由于AB∥CD、BE∥CF,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,则∠EBC=∠FCB,可得到∠ABC-∠EBC=∠DCB-∠FCB,即有∠1=∠2.(答案不唯一)
已知:如图,AB∥CD、BE∥CE,
求证:∠1=∠2.
证明:如图,
∵AB∥CD,
∴∠ABC=∠DCB,
又∵BE∥CF,
∴∠EBC=∠FCB,
∴∠ABC-∠EBC=∠DCB-∠FCB,
∴∠1=∠2.
【题目】如图,在四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折得到△FMN,若MF∥AD,FN∥DC,则∠D的度数为( )
A. 115° B. 105° C. 95° D. 85°
【题目】我国古籍《周髀算经》中早有记载“勾三股四弦五”,下面我们来探究两类特殊的勾股数.通过观察完成下面两个表格中的空格(以下a、b、c为Rt△ABC的三边,且a<b<c):
表一
a | b | c |
3 | 4 | 5 |
5 | 12 | 13 |
7 | 24 | 25 |
9 | 41 |
表二
a | b | c |
6 | 8 | 10 |
8 | 15 | 17 |
10 | 24 | 26 |
12 | 41 |
(1)仔细观察,表一中a为大于1的奇数,此时b、c的数量关系是 ,a、b、c之间的数量关系是 ;
(2)仔细观察,表二中a为大于4的偶数,此时b、c的数量关系是 ,a、b、c之间的数量关系是 ;
(3)我们还发现,表一中的三边长“3,4,5”与表二中的“6,8,10”成倍数关系,表一中的“5,12,13”与表二中的“10,24,26”恰好也成倍数关系……请直接利用这一规律计算:在Rt△ABC中,当,b=时,斜边c的值.