题目内容

【题目】如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为( )

A.8 B.9 C.10 D.11

【答案】C

【解析】

试题分析:运用正方形边长相等,再根据同角的余角相等可得BAC=DCE,然后证明ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.

解:由于a、b、c都是正方形,所以AC=CD,ACD=90°

∵∠ACB+DCE=ACB+BAC=90°,即BAC=DCE,

ABCCED中,

∴△ACB≌△DCE(AAS),

AB=CE,BC=DE;

在RtABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2

即Sb=Sa+Sc=1+9=10,

b的面积为10,

故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网