题目内容
【题目】若顺次连接四边形ABCD四边中点形成的四边形为矩形,则四边形ABCD满足的条件为.___________
【答案】AC⊥BD
【解析】
如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.
顺次连接四边形ABCD四边中点形成的四边形为矩形,则四边形ABCD满足的条件为对角线垂直,理由:
∵四边形EFGH是矩形,
∴∠FEH=90°,
又∵点E、F、分别是AD、AB、各边的中点,
∴EF是三角形ABD的中位线,
∴EF∥BD,
∴∠FEH=∠OMH=90°,
又∵点E、H分别是AD、CD各边的中点,
∴EH是三角形ACD的中位线,
∴EH∥AC,
∴∠OMH=∠COB=90°,
则AC⊥BD,故四边形ABCD满足的条件为对角线垂直.
故答案为:AC⊥BD.
练习册系列答案
相关题目