题目内容

【题目】如图,在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分…将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,则称∠BAC是△ABC的好角.

(1)若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C (设∠B>∠C)之间的等量关系为
(2)若一个三角形的最小角是4°,且该三角形的三个角均是此三角形的好角.请写出符合要求三角形的另两个角的度数 . (写出一种即可)

【答案】
(1)∠B=n∠C
(2)4、172;8、168;16、160;44、132;88°、88°
【解析】解:(1)∠B=3∠C;如图所示,

在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C重合,则∠BAC是△ABC的好角.

证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2

∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;

∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1﹣∠A1 B1C=∠BAC+2∠B﹣2∠C=180°,

根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,

∴∠B=3∠C;

由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;

由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;

由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;

故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;

所以答案是:.(2)由(1)知设∠A=4°,∵∠C是好角,∴∠B=4n°;

∵∠A是好角,∴∠C=m∠B=4mn°,其中m、n为正整数得4+4n+4mn=180

∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.

所以答案是:4、172;8、168;16、160;44、132;88°、88°

【考点精析】根据题目的已知条件,利用三角形的外角的相关知识可以得到问题的答案,需要掌握三角形一边与另一边的延长线组成的角,叫三角形的外角;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网