题目内容

已知抛物线y=-x2+(m-4)x+2m+4与x轴交于点A(x1,0)、B(x2,0)两点,与y轴交于点C,且x1<x2,x1+2x2=0.若点A关于y轴的对称点是点D.
(1)求过点C、B、D的抛物线的解析式;
(2)若P是(1)中所求抛物线的顶点,H是这条抛物线上异于点C的另一点,且△HBD与△CBD的面积相等,求直线PH的解析式.
(1)由题意得:
x1+2x2=0①
x1+x2=m-4②
x1x2=-2m-4③
(m-4)2+4(2m+4)=m2+32>0

由①②得:x1=2m-8,x2=-m+4,
将x1、x2代入③得:(2m-8)(-m+4)=-2m-4,
整理得:m2-9m+14=0.
∴m1=2,m2=7(2分)
∵x1<x2
∴2m-8<-m+4
∴m<4
∴m2=7(舍去)(3分)
∴x1=-4,x2=2,点C的纵坐标为:2m+4=8
∴A、B、C三点的坐标分别是A(-4,0)、B(2,0)、C(0,8)(4分)
又∵点A与点D关于y轴对称
∴D(4,0)(5分)
设经过C、B、D的抛物线的解析式为:y=a(x-2)(x-4)(6分)
将C(0,8)代入上式得:8=a(0-2)(0-4)
∴a=1,
∴所求抛物线的解析式为:y=x2-6x+8.(7分)

(2)∵y=x2-6x+8=(x-3)2-1,
∴顶点P(3,-1)(8分)
设点H的坐标为H(x0,y0
∵△BCD与△HBD的面积相等
∴|y0|=8
∵点H只能在x轴的上方,
故y0=8
将y0=8代入y=x2-6x+8中得:x0=6或x0=0(舍去)
∴H(6,8)(9分)
设直线PH的解析式为:y=kx+b得:
3k+b=-1
6k+b=8

解得:
k=3
b=-10

∴直线PH的解析式为:y=3x-10.(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网