题目内容
【题目】如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4)
【答案】5米.
【解析】
试题分析:利用30°的正切值即可求得AE长,进而可求得CE长.CE减去DE长即为信号塔CD的高度.
试题解析:根据题意得:AB=18,DE=18,∠A=30°,∠EBC=60°,
在Rt△ADE中,AE=
∴BE=AE-AB=18-18,
在Rt△BCE中,CE=BEtan60°=(18-18)=54-18,
∴CD=CE-DE=54-18-18≈5米.
练习册系列答案
相关题目