题目内容

如图(1)所示,正比例函数y=kx与反比例函数y=
t
x
的图象交于点A(-3,2).


(1)试确定上述正比例函数与反比例函数的解析式;
(2)根据图象回答,在第二象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)如图(2)所示,P(m,n)是反比例函数图象上的一动点,其中-3<m<0,过点P作直线PBx轴,交y轴于点B,过点A作直线ADy轴,交x轴于点D,交直线PB于点C.当四边形OACP的面积为6时,请判断线段BP与CP的大小关系,并说明理由.
(4)在第(3)问条件中,连接AP,若∠PAO=90°,试求分式m2+
16
m2
的值.
(1)把A(-3,2)代入y=kx得:2=-3k,
解得:k=-
2
3

∴y=-
2
3
x,
代入y=
t
x
得:t=-6,
∴y=-
6
x

答:正比例函数与反比例函数的解析式分别是y=-
2
3
x,y=-
6
x


(2)∵A(-3,2),
由图象可知:当-3<x<0时,在第二象限内,反比例函数的值大于正比例函数的值.

(3)答:线段BP与CP的大小关系是BP=CP,
理由是:∵P(m,n)在y=-
6
x
上,
∴mn=-6,
∵DO=3,AD=2,OB=n,BP=-m,CP=3-PB,DC=n,
四边形OACP的面积为6,
∴S矩形CDOB-S△ADO-S△OBP=6,
3n-
1
2
×3×2-
1
2
×(-mn)=6,
3n-3-
1
2
×6=6,
3n=12,
解得:n=4,
∴m=-
6
4
=-
3
2

∴P(-
3
2
,4),
∴PB=
3
2
,CP=3-
3
2
=
3
2

∴BP=CP.

(4)∵P(m,n),P点在y=-
6
x
图象上,
∴mn=-6,
∴n=-
6
m

∵∠PAO=90°,
∴∠CAP+∠DAO=90°,
∵∠AOD+∠DAO=90°,
∴∠AOD=∠CAP,
又∵∠C=∠ADO=90°,
∴△CAP△DOA,
AD
CP
=
DO
AC

2
3+m
=
3
-
6
m
-2

解得:m1=-3(不合题意舍去),m2=-
4
3

∴m2+
16
m2
=(-
4
3
2+
16
(-
4
3
)2
=
97
9
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网