题目内容
【题目】如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE;
(1)求证:△ACD≌△BCE;
(2)若∠D=50°,求∠B的度数.
【答案】(1)证明见解析;(2)70°.
【解析】
试题分析:(1)根据中点的定义可得:AC=BC,根据角平分线的定义可证∠ACD=∠BCE,利用SAS可证△ACD≌△BCE;
(2)根据角平分线的定义可以求出∠BCE=60°,根据全等三角形对应角相等可以求出∠E=∠D=50°,根据三角形内角和定理可以求出∠B的度数.
试题解析:(1)∵C是线段AB的中点,
∴AC=BC,
∵CD平分∠ACE,
∴∠ACD=∠DCE,
∵CE平分∠BCD,
∴∠BCE=∠DCE,
∴∠ACD=∠BCE,
在△ACD和△BCE中,,
∴△ACD≌△BCE(SAS),
(2)∵∠ACD=∠BCE=∠DCE,且∠ACD+∠BCE+∠DCE=180°,
∴∠BCE=60°,
∵△ACD≌△BCE,
∴∠E=∠D=50°,
∴∠B=180°-(∠E+∠BCE)= 180°-(50°+60°)=70°
练习册系列答案
相关题目