题目内容
【题目】在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.
(1)求抛物线的解析式;
(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.
(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.
【答案】(1)抛物线的解析式为y=x2﹣x+1.(2)点P的坐标为(,﹣1).(3)定点F的坐标为(2,1).
【解析】(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;
(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;
(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.
(1)∵抛物线的顶点坐标为(2,0),
设抛物线的解析式为y=a(x-2)2.
∵该抛物线经过点(4,1),
∴1=4a,解得:a=,
∴抛物线的解析式为y=(x-2)2=x2-x+1.
(2)联立直线AB与抛物线解析式成方程组,得:
,解得:,,
∴点A的坐标为(1,),点B的坐标为(4,1).
作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).
∵点B(4,1),直线l为y=-1,
∴点B′的坐标为(4,-3).
设直线AB′的解析式为y=kx+b(k≠0),
将A(1,)、B′(4,-3)代入y=kx+b,得:
,解得:,
∴直线AB′的解析式为y=-x+,
当y=-1时,有-x+=-1,
解得:x=,
∴点P的坐标为(,-1).
(3)∵点M到直线l的距离与点M到点F的距离总是相等,
∴(m-x0)2+(n-y0)2=(n+1)2,
∴m2-2x0m+x02-2y0n+y02=2n+1.
∵M(m,n)为抛物线上一动点,
∴n=m2-m+1,
∴m2-2x0m+x02-2y0(m2-m+1)+y02=2(m2-m+1)+1,
整理得:(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.
∵m为任意值,
∴,
∴,
∴定点F的坐标为(2,1).
【题目】某校共有1000名学生,为了了解他们的视力情况,随机抽查了部分学生的视力,并将调查的数据整理绘制成直方图和扇形图.
(1)这次共调查了多少名学生?扇形图中的、值分别是多少?
(2)补全频数分布直方图;
(3)在光线较暗的环境下学习的学生占对应被调查学生的比例如下表:
视力 | 0.35~0.65 | 0.65~0.95 | 0.95~1.25 | 1.25~l.55 | |
比例 |
根据调查结果估计该校有多少学生在光线较暗的环境下学习?