题目内容

如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点OAB上, OMON分别交CACB于点PQ,∠MON绕点O任意旋转.当时, 的值为          ;当时,的值为        .(用含n的式子表示)
如图,过点O作OH⊥AC于H,OG⊥BC于G,由条件可以表示出HO、GO的值,通过证明△PHO∽△QGO由相似三角形的性质就可以求出结论.
解答:解:过点O作OH⊥AC于H,OG⊥BC于G,
∴∠OHP=∠OGQ=90°.
∵∠ACB=90°,
∴四边形HCGO为矩形,
∴∠HOG=90°,
∴∠HOP=∠GOQ,
∴△PHO∽△QGO,

,设OA=x,则OB=2x,且∠ABC=30°,
∴AH=x,OG=x.
在Rt△AHO中,由勾股定理,得
OH=x,

=
故答案为:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网