题目内容
【题目】正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x轴于B,CD⊥x轴于D(如图),则四边形ABCD的面积为( )
A.1 B. C.2 D.
【答案】C
【解析】
试题分析:首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,得出S△AOB=S△ODC=,再根据反比例函数的对称性可知:OB=OD,得出S△AOB=S△ODA,S△ODC=S△OBC,最后根据四边形ABCD的面积=S△AOB+S△ODA+S△ODC+S△OBC,得出结果.
解:根据反比例函数的对称性可知:OB=OD,AB=CD,
∴四边形ABCD的面积=S△AOB+S△ODA+S△ODC+S△OBC=1×2=2.
故选C.
练习册系列答案
相关题目
【题目】 “节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
节水量/立方米 | 1 | 1.5 | 2.5 | 3 |
户数/户 | 50 | 80 | a | 70 |
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?