题目内容
【题目】如图,四边形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=3,点P为BC边上一动点,若△PAB与△PCD是相似三角形,则BP的长为 _____________
【答案】1或2
【解析】
设BP=x,则CP=BC-BP=3-x,易证∠B=∠C=90°,根据相似三角形的对应顶点分类讨论:①若△PAB∽△PDC时,列出比例式即可求出BP;②若△PAB∽△DPC时,原理同上.
解:设BP=x,则CP=BC-BP=3-x
∵AB∥CD,∠B=90°,
∴∠C=180°-∠B=90°
①若△PAB∽△PDC时
∴
即
解得:x=1
即此时BP=1;
②若△PAB∽△DPC时
∴
即
解得:
即此时BP=1或2;
综上所述:BP=1或2.
故答案为:1或2.
练习册系列答案
相关题目