题目内容

如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=9cm,BC=14cm,CA=13cm,则AF的长为


  1. A.
    3cm
  2. B.
    4cm
  3. C.
    5cm
  4. D.
    9cm
B
分析:设AF=acm,根据切线长定理得出AF=AE,CE=CD,BF=BD,求出BD=BF=(9-a)cm,CD=CE=(13-a)cm,根据CD+BD=BC,代入求出a即可.
解答:设AF=acm,
∵△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,
∴AF=AE,CE=CD,BF=BD,
∵AB=9cm,BC=14cm,CA=13cm,
∴BD=BF=(9-a)cm,CD=CE=(13-a)cm,
∵BD+CD=BC=14cm,
∴(9-a)+(13-a)=14,
解得:a=4,
即AF=4cm.
故选B.
点评:本题考查了三角形的内切圆与内心和切线长定理,关键是推出AF=AE,CE=CD,BF=BD,用了方程思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网