题目内容
【题目】已知二次函数y=x2﹣2mx+m2+3(m为常数),下列结论正确的是( ).
A.当m=0时,二次函数图象的顶点坐标为(0,0)
B.当m<0时,二次函数图象的对称轴在y轴右侧
C.若将该函数图象沿y轴向下平移6个单位,则平移后图象与x轴两交点之间的距离为2
D.设二次函数的图象与y轴交点为A,过A作x轴的平行线,交图象于另一点B,抛物线的顶点为C,则△ABC的面积为m3
【答案】C.
【解析】
试题分析:根据m=0可得出二次函数图象的顶点坐标为(0,3);根据对称轴公式x=﹣,抛物线的对称性以及抛物线的平移可得出结论.A、当m=0时,二次函数解析式为y=x2+3,则二次函数图象的顶点坐标为(0,3),故A错误;B、抛物线对称轴为x=﹣=m,当m<0时,二次函数图象的对称轴在y轴左侧,故B错误;C、该函数图象沿y轴向下平移6个单位后,解析式为y=x2﹣2mx+m2+3﹣6,即y=x2﹣2mx+m2﹣3,与x轴的两个交点为(m+,0),(m﹣,0),两交点之间的距离为2,故C正确;D、二次函数的图象与y轴交点为A,过A作x轴的平行线,交图象于另一点B,抛物线的顶点为C,则△ABC的面积为|m|3,故D错误.故选C.
练习册系列答案
相关题目